Fichier à télécharger

56.2 Mo

Thèse présentée à

Normandie Université - INSA de Rouen

Spécialité Énergétique



Soutenue le 13 décembre 2017

Numerical and Modeling Methods for Multi-level Large Eddy Simulations of Turbulent Flows in Complex Geometries
Jury Rapporteur
Y. DUBIEF, Professeur associé à l’Université du Vermont USA
F. NICOUD, Professeur à l’Université de Montpellier, IMAG
L. Danaila, Professeur à l’université de Rouen
G. Balarac, Maître de conférence, LEGI
A. Larat, Chargé de recherche CNRS, EM2C
V. Brunet Chef du département CFD, Safran
Directeur de thèse
A. BERLEMONT, Directeur de recherche CNRS, CORIA
Co-encadrant de thèse
V. MOUREAU, Chargé de recherche CNRS, CORIA

Numerical and Modeling Methods for Multi-level Large Eddy Simulations of Turbulent Flows in Complex Geometries

Large-Eddy Simulation (LES) has become a major tool for the analysis of highly turbulent flows in complex geometries. However, due to the steadily increase of computational resources, the amount of data generated by well-resolved numerical simulations is such that it has become very challenging to manage them with traditional data processing tools. In Computational Fluid Dynamics (CFD), this emerging problematic leads to the same "Big Data" challenges as in the computer science field. Some techniques have already been developed such as data partitioning and ordering or parallel processing but still remain insufficient for modern numerical simulations. Hence, the objective of this work is to propose new processing formalisms to circumvent the data volume issue for the future 2020 exa-scale computing objectives. To this aim, a massively parallel co-processing method, suited for complex geometries, was developed in order to extract large-scale features in turbulent flows. The principle of the method is to introduce a series of coarser nested grids to reduce the amount of data while keeping the large scales of interest. Data is transferred from one grid level to another using high-order filters and accurate interpolation techniques. This method enabled to apply modal decomposition techniques to a billion-cell LES of a 3D turbulent turbine blade, thus demonstrating its effectiveness. The capability of performing calculations on several embedded grid levels was then used to devise the multi-resolution LES (MR-LES). The aim of the method is to evaluate the modeling and numerical errors during an LES by conducting the same simulation on two different mesh resolutions, simultaneously. This error estimation is highly valuable as it allows to generate optimal grids through the building of an objective grid quality measure. MR-LES intents to limit the computational cost of the simulation while minimizing the sub-grid scale modeling errors. This novel framework was applied successfully to the simulation of a turbulent flow around a 3D cylinder.

Catalogue des Documents
Ecrire au Laboratoire
Flux RSS
Contact & Accès
Départements de Recherche du Laboratoire
Activités du département ER
Activités du Département TASC
Activités du Département OL
Informations pratiques concernant les Masters DIODE et EFE
Diagnostic Laser et Métrologie Optique
Où sommes nous ! Plans d’accès. Contact Principaux de l’UMR 6614-CORIA ...
Thèses du Laboratoire. (2002 - ... )
Prochainement en ligne !
This page contains some descriptions of techniques or tools developed for the characterisation of soot particles.
Centre de Combustion Avancée pour l’Aéronautique du Futur
Cavitation et atomisation dans les buses d’injecteurs : étude numérique et expérimentale
Our research activities on ultrafast laser sources, fiber optics and nonlinear dynamics.
Femtosecond and ballistic imaging of high-speed liquid jets and sprays
L’Europe s’engage en Normandie avec le Fond Européen de Développement Régional.
Les Membres
dot : Nouveau

MàJ ··· 19 novembre 2019

:::  ico   :::