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Abstract  
Among renewable combustible fuels, n-pentanol is considered as a potential candidate. In this work, we 

proposed and applied a novel mechanism reduction-assisted procedure to optimize rate parameters of the 

recently developed n-pentanol part of the detailed NUIGMech 1.1 multifuel combustion kinetic mechanism, 

which would be otherwise unfeasible. According to our proposed method, first a precise reduced mechanism is 

developed, which thus can be optimized effectively against experimental targets, then the tuned parameter values 

are inserted back into the detailed model, whose accuracy thereby can also be improved to a similar extent.  

 

Introduction 

Our modern society relies on the large-scale 

consumption of energy: Our household appliances, 

working tools, services, and methods of transportation 

are working via the power of electricity or direct 

burning of fuel. Today, energy production is still 

overwhelmingly dominated by the combustion of 

fossil fuels, whose resources, according to some more 

pessimistic outlooks, may be depleted within half a 

century at the current rate of utilization.  

Popularly considered renewable alternative to 

transportation fuels are bioalcohols. Bioethanol is 

already in use as a petrol additive in most countries 

(e.g. E10 fuel standard), and in certain countries (e.g. 

Brazil) as the main fuel component. However, the 

hygroscopic property of ethanol causes limited mixing 

with petroleum fuels, and may also cause corrosion in 

the fuel system. For this reason, longer chain 

bioalcohols are considered as a viable alternative, 

however their production is not economical yet. 

Larger bioalcohols like n-butanol and n-pentanol are 

expected to be better ingredients, as due to their longer 

carbon chains their physical and combustion 

properties are more similar to those of hydrocarbons 

fuel. Regarding the combustion of the long chain 

bioalcohols, biobutanol have already been researched 

for more than a decade, whereas on n-pentanol 

combustion still relatively little is known. 

Kinetic models are developed for the 

understanding the combustion of fuels and to promote 

the development of new combustion technologies 

based on them. These kinetic models contain not only 

the reaction steps, but also their rate parametrization, 

which in theory defines their pressure and temperature 

dependence. Furthermore, thermodynamic and 

transport data is provided for each chemical species 

with the models, thus in theory it allows simulations 

of systems with complex geometries. Nowadays, 

computational fluid dynamics (CFD) simulations 

using chemical kinetic models are central tools in the 

development of modern combustion devices.  

The models are then validated against data from 

indirect experimental measurements, whose results 

can be simulated using only detailed mechanisms, that 

is they contain indirect information on the rate of 

elementary reactions. Such experimental 

measurements are for example ignition delay times 

(IDT) measured in rapid compression machines 

(RCM) and shock tubes (ST), concentration data from 

jet-stirred reactor (JSR) measurements, and laminar 

burning velocities (LBV) from burners, etc.  

The size of detailed combustion mechanisms, 

depending on the fuel molecule can range from tens of 

species and reactions (hydrogen, methane) to hundreds 

(natural gas, gasoline surrogates) and thousands (e.g. 

diesel surrogates, biodiesel). The accuracy of these 

models can be significantly improved by systematic 

parameter tuning, however, their sheer size makes 

their application unfeasible not only in CFD 

simulations, but also for parameter tuning against 

large amount of experimental data. 

The aim of the present work is to improve the 

accuracy of the novel n-pentanol part of the 

NUIGMech multifuel mechanism (almost 3000 

species and over 10000 reactions) against 

experimental wide range of experimental data. To 

overcome this very challenging task, we propose the 

novel concept of mechanism reduction-assisted 

parameter optimization. 

In the following chapters, we introduce the 

combustion mechanism and experimental data 

collection used as targets in the mechanism 

optimization. Then we discuss the mechanism 

reduction procedure and the optimization procedure, 

and finally the validation of the optimized detailed 

mechanism. 

 

The investigated combustion mechanism 

The NUIGMech 1.1 combustion mechanism [1] is 

designed to incorporate description for the combustion 

of a wide array of fuels: from hydrogen, syngas and 

saturated and unsaturated C1-C5 hydrocarbons to 
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formaldehyde, acetaldehyde, dimethyl-ether and C1-C4 

alcohols. This mechanism has been recently extended 

with detailed chemistry for n-pentanol [2], which 

however, cannot be used separately due to the 

hierarchical structure of combustion pathways of fuel 

molecules of increasing size. Such multifuel 

mechanisms represent the state of art combustion 

knowledge as most of their rate coefficients have been 

consistently constrained by large number of 

experimental targets for various fuels as they were 

developed in a hierarchical manner over decades. 

Their further advantage is that they also allow the 

simulation of fuel blends, which are becoming more 

and more important in the future as the renewable 

fuels cover several compound types.  

Combustion mechanism of such multifuel 

mechanisms, however, necessarily require several 

hundreds of species and reactions steps, thus their 

simulation can be a very time consuming even when a 

single fuel is investigated. The NUIGMech1.1 with 

the n-pentanol chemistry extension contains 2831 

species and 11680 mechanisms, which can pose some 

serious difficulties in parameter optimization against 

an extensive data collection covering wide range of 

conditions.  

 

Experimental data collection 

Three types of experiment data are used as targets 

in the mechanism optimization: ignition delay times 

(IDT) from high-pressure shock tubes (HPST) and 

rapid compression machines (RCM) from the work of 

Chatterjee et al. [2], stationary concentration data from 

jet-stirred reactors (JSR) by Pelucchi et al. [3] and 

Togbé et al. [4], and laminar burning velocities (LBV) 

from spherical bomb measurements by Nativel et al. 

[5] Table 1 summarizes the covered ranges of 

conditions and the sizes of the data collections of 

various types. The JSR experiments provided 

stationary concentrations for several species O2, CH4, 

CH2O, CO, CO2, C2H2, C2H4, CH3CHO, C3H6, C4H6, 

C4H8-1, n-C5H11OH, C5H10-1, P-C4H9CHO by Togbé 

et al., whereas Pelucchi et al. measured concentrations 

also for H2, H2O and C2H6. 

All experimental conditions and measured data we 

collected were stored in ReSpecTh Kinetics Data 

(RKD) XML data files [6], which allow their 

automated use for setting up simulations in the 

Optima++ parameter optimization environment [7]. 

Our data collection is very unbalanced one as it 

contains 104 series of concentration, 14 series of 

ignition delay, and only 3 series of laminar burning 

velocity measurements. Within a data series a single 

condition parameter is changed systematically: 

temperature for JSR and IDT measurements, and 

equivalence ratio for LBV measurements, thus we 

introduced a weighting in the error function to get an 

optimized mechanism with balanced performance for 

the three data types. 

 The total error of each experimental data series 

was estimated based on the error value given by the 

experimentalists and the inherent statistical noise of 

the data series using the following formula: 

        
       

       
  (1) 

The reported experimental error was taken as 

      unless it was stated differently in the original 

publication. For JSR simulation, the reported 

uncertainty was given in 5-10% was given, which, 

however cannot be interpreted for zero measured 

values and would lead to strong overweighting of tiny 

concentration values in the error function. Thus, we 

took as a rule thumb we took      as the 10% of the 

maximum value of the measured concentration of the 

corresponding species within each data series. The 

used values of uncertainties during the optimization 

are listed in Table 1. Beyond these estimates, we also 

assessed the scatter of the statistical noise (     
 ) for 

each data series was determined with the help of the 

Minimal Spline Fit code [8]. The minimal spline fit 

code generates an optimal trendline in the form of 

 

Table 1. The indirect experimental data collection used as target in the mechanism optimization  

data type ignition delay times (IDT) stationary concentrations 
laminar burning 

velocities (LBV) 

method 

high-pressure 

shock tube 

(HPST) 

rapid  

compression 

machine (RCM) 

jet-stirred reactor (JSR) spherical bomb 

authors Chatterjee et al. Pelucchi et al. Togbé et al. Nativel et al. 

equivalence ratio 0.5, 1, 2 0.5, 1, 2 0.5, 1, 2 0.35, 0.5, 1, 2 0.7 - 1.3 

pressure (atm) 15, 30 15, 30 1 10 1 

temperature (K) 800-1250 670-950 500-1100 770-1220 353, 433, 473 

no. data files 6 8 3 4 3 

no. data series 6 8 42 62 3 

no. data points 49 36 1050 852 44 

weights      1/(6+8) 1/(42+62) 1/3 

uncertainty     
  10% 

10% of its maximum 

concentration in the data series 
1.2% 
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Akima splines that minimizes the Akaike information 

loss. The root mean square deviation of the data from 

this spline curve gives the      
  standard deviation of 

the statistical noise. 

 

The novel concept of mechanism reduction-assisted 

parameter optimization 

To speed up the parameter optimization of large 

reaction mechanism, which would otherwise be 

computationally too expensive or even unfeasible with 

current computational methods and resources, we 

propose the following mechanism reduction-assisted 

parameter optimization procedure: 

1.  Development of a reduced mechanism, which can 

accurately reproduce the simulation results of the 

large mechanisms at the conditions of the 

experimental targets. 

2.  Optimization of the important parameters of the 

reduced mechanism against the experimental 

targets.  

3.  Reintroduction of the optimal parameter values to 

the large mechanism and validation of this updated 

mechanism against the experimental targets.  

 

Mechanism reduction procedure 

Unfortunately, the full mechanism could not be 

simulated successfully at the experimental conditions 

of the targets using OpenSMOKE [9], thus we used 

Cantera [10] for the reference simulations and for the 

mechanism with the full mechanism. Therefore, in this 

work we applied, reaction rate-based mechanism 

reduction method by modification example code 

within Cantera. The mechanism reduction procedure is 

summarized in Fig. 1 and has the following steps: 

1. Simulations are carried out at conditions covering 

those of target experimental data and reaction rates 

(net rate for reversible reactions) were calculated 

and stored at each solution state, namely at each 

grid point, at frequent time points and at each 

stationary solution for LBV, IDT and JSR 

simulations, respectively. 

2. The reactions rates at each stored state are 

normalized with respect to the largest absolute rate 

and the reactions are ranked according to this 

normalized value at each state. For reaction i the 

normalized reaction rate value at state j is: 

   
     

            

   
 

            
 (2) 

3. Three global rankings are determined for the three 

simulation types based on the maximum values of 

normalized rates of reactions over the states in the 

simulations of those experiments: 

      
        

     
    (3) 

      
        

     
    (4) 

      
        

     
    (5) 

4. For LBV simulations, reactions are selected into 

the reduced mechanism in descending order of 

their       
     values until the mechanism reproduces 

the simulation results of the full mechanism within 

5% accuracy. 

5. For IDT simulations, reactions are selected into the 

reduced mechanism in descending order of their 

      
     values until the mechanism reproduces the 

simulation results of the full mechanism within 5% 

accuracy. 

6. For JSR simulations, reactions are selected into the 

reduced mechanism in descending order of their 

      
     values until the mechanism reproduces the 

simulation results of the full mechanism within 5% 

accuracy. 

7. If no inclusion was done to the mechanism in steps 

5 or 6 then the steps from step 4 are repeated.  

If no inclusion was done then we arrived at a reduced 

mechanism which can accurately reproduce the 

simulation results of the full mechanisms at the 

conditions of the target experimental data, thus they 

are expected to behave similarly upon parameter 

tuning, which allows indirect optimization of full 

mechanism. 

 

Mechanism optimization procedure 

For the parameter optimizations, we applied code 

Optima++ [11], which implements the optimization 

method developed by Turányi et al. [12] and uses the 

numerical optimization algorithm FOCTOPUS 

developed by T. Nagy [12,13]. In this work we used 

OpenSMOKE++ [9,14] simulation code for IDT and 

JSR simulations and Zero-RK [15] for LBV 

simulations. The method minimizes the following 

error function: 

     
 

 
  

    

    

  
    

           
   

    
        

     

   

   

   

 

  

   

 (6) 

where   is the total number of data series, Nf is the 

number of data files,  fs is the number of data series in 

the f-th file and  fsd is the number of data in its s-th 

data series. In this data series,     
   

 is the optionally 

transformed d-th data and     
    is its simulated value, 

Figure 1. Flow diagram of the mechanism reduction procedure 
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which depends on parameter vector P that contains 

transformed Arrhenius parameters (ln A, n, E/R). R is 

the universal gas constant. The      factors are the 

weights, which can help to develop optimized 

mechanism with balanced performance in reproducing 

all type of experimental data.  

The experimental uncertainty of a data point is 

also taken into account via the     
       

 standard 

deviation of its determination (see Table 1). Thus, 

square root of E(P) measures the root mean squared 

deviation of the simulation results from the 

experimental data relative to the standard deviation of 

the experimental data. Square root of E(P) is around 1 

for a perfect model, and below 3 for a model which is 

accurate on average within three experimental 

standard deviation. 

The selected Arrhenius parameters were optimized 

in such a way that the rate coefficients calculated with 

the optimized rate parameters always remained within 

their prior uncertainty interval [kmin(T); kmax(T)] in the 

temperature interval of 600 K to 3000 K. The 

uncertainty parameter is defined as the radius of a 

symmetric uncertainty range around the nominal k
0
(T) 

value on log10 scale: 

               

       

     
      

     

       
  (7) 

As no a priori information was known for the 

uncertainty range of the influential reactions, one 

order of magnitude of uncertainty was assumed for the 

rate coefficients in the 600-3000K temperature range, 

which corresponded to          value.  

 

Selection of active parameters 

Detailed combustion mechanisms usually contain 

large number of uncertain parameters. Frenklach et al. 

suggested that only those parameters (‘the active 

parameters’) that have a high influence on the 

simulated value of the experimental data need to be 

fitted. Frenklach et al. noted [16] that at the selection 

of the active parameters not the local sensitivity 

information, but the product of sensitivity and the 

range of parameter uncertainty should be considered.  

In a recent work [17], Kovács et al. proposed a 

very efficient novel method, called PCALIN, which 

was derived from the incomplete second-order 

expansion of the error function in Eq. (1) by T. Nagy. 

The dominant contributions in the second-order term 

can be identified by principal component analysis 

(PCA) of a scaled local sensitivity matrix, which 

incorporates not only the local sensitivity coefficients 

with respect to pre-exponential factors: 

     
     

      

      

  (8) 

but also considers the uncertainty of parameters ( ), 

and the uncertainty (    
       

) and the weights (     

    ) of the experimental data in the error function. 

The PCA identifies the most important correlated 

parameter groups (i.e. reaction groups) which should 

be optimized together to efficiently reduced the values 

of the error function. The first-order variations of the 

error functions (“LIN” stands for linear contribution) 

due to parameter variations along a principal 

component can also be significant, which is also taken 

into account by the PCALIN selection procedure and 

can provide a very efficient selection of parameters. 

The PCALIN method is implemented in the Strategy 

code, which is also available from the ReSpecTh 

webpage [18]. 

 

Results  

The size, the simulation speed and the accuracy of 

the original and optimized full and reduced 

mechanisms can be found Table 2 and also shown in 

Fig. 2. The reduced mechanism had only 322 species 

and  2831 reactions, while it could be simulated more 

than 40 times faster at homogeneous conditions (i.e. 

IDT and JSR), and had no or only minor convergence 

issues in laminar flame simulations opposed to the full 

mechanism. The reduced mechanism has the same 

accuracy as the full mechanism for all experimental 

data types: they both showed very little error for LBV 

simulations, and significant, on average 3.4 and 2.5 

times larger error (i.e.    values) than the 

experimental uncertainty for IDT and JSR targets, 

respectively. 

We carried out brute-force local sensitivity 

analysis using the Optima simulation environment, 

which employed the OpenSMOKE [9,14] code for 

ignition and jet-stirred reactor simulations and the 

Zero-RK [15] code for laminar flame simulations. 

Using local sensitivities, the experimental 

uncertainties and weights discussed in the 

Experimental data collection chapter (see Table 1 and 

text) and assuming          value, the PCALIN 

method could identify 64 influential rate coefficients 

out of the 524 pentanol-related rate coefficients in the 

reduced mechanism. This rate coefficient included 

PLOG rate coefficients defined for various pressures. 

The Optima++ code was used to optimize the 

364=192 Arrhenius parameters of the identified rate 

coefficients while constraining their            

Arrhenius curves within ±1 order of magnitude wide 

band in the 600K-3000K temperature range around the 

initial Arrhenius curves. The same simulation codes 

were used here, as for sensitivity analysis.  

Table 2. Size and performance of the mechanisms 

 full reduced 

 orig. optimized orig. optimized 

no. species 2831 322 

no. reactions 

all/pentanol 
11680/631 2096/524 

0D simul. rate 1 ~ 40 

   for LBV 0.71 0.77 0.70 0.79 

   for IDT 3.38 1.92 3.37 1.92 

   for JSR 2.48 2.04 2.49 2.03 

   overall 2.45 1.68 2.45 1.68 
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  Figure 2. Accuracy of the mechanisms for various 

experimental data types  

By the optimization the error function of the 

reduced mechanism for IDT and JSR targets could be 

reduced significantly on average, down to two 

standard deviations of experimental uncertainty, 

whereas the great accuracy for LBV targets did not 

deteriorate. By inclusion of the optimized parameters 

into the full mechanism, its accuracy could be 

improved exactly with the same extent. The accuracy 

of the mechanisms for LBV data, IDT data from 

RCMs and HPSTs, and concentration data from JSR’s 

are shown in Figs. 3-6, respectively. In all cases, the 

accuracy of the reduced mechanism and optimized 

mechanism behave in accord with the expectations 

proving the transferability of optimized parameters.  

In the case of JSR targets, lower improvements can 

be realized as in the case of IDT targets, which can be 

explained by the JSR data series containing 

concentrations for several small species, whose 

chemistry is largely affected by reactions that are not 

exclusive to n-pentanol, thus were not considered 

during the optimization. For LBV targets, since the 

error function was already very small, the reason for 

their inclusion into the optimization was to avoid the 

deterioration of the good performance for LBV data. 

 

Conclusions, outlooks 

The aim of this research was to improve the 

accuracy of the detailed n-pentanol chemistry of the 

NUIGMech 1.1 multifuel combustion mechanism. 

This task, due to the large size of the mechanism, is 

unfeasible by current computational methods and 

resources, thus we came up with the novel idea of 

mechanism reduction assisted parameter optimization. 

By mechanism reduction a much smaller, but accurate 

reduced mechanism could be made, which then could 

be optimized against wide range of experimental 

targets in a reasonable time. The marked improvement 

in the accuracy of the reduced mechanism could be 

realized in the huge NUIGMech mechanism as well 

by transferring the tuned parameter values to it, 

making this seemingly impossible task feasible. This 

powerful approach is expected to have great 

importance in the optimization of detailed large 

combustion mechanisms, whose number is rapidly 

growing due the advancement of automatic 

mechanism generation tools and increasing interest in 

renewable fuels. 

 
Figure 3. Accuracy of the mechanisms for laminar 

burning velocity (LBV) measurements (legend as in 

Fig. 2.) 

 
Figure 4. Accuracy of the mechanisms for ignition 

delay measurements in high-pressure shock tubes 

(HPST, Chatterjee et al., legend as in Fig. 2.).  

 
Figure 5. Accuracy of the mechanisms for ignition 

delay measurements in rapid compression machines 

(RCM) (Chatterjee et al.). 

  

Figure 6. Accuracy of the mechanisms for 

concentration measurements in jet-stirred reactors 

(JSR, legend as in Fig. 5). 
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