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Abstract  
In previous mechanism optimization studies, the active parameters were selected based either on local sensitivity 

coefficients or on products of the local sensitivity coefficient and the uncertainty of the parameters. In this work, 

we propose a very efficient novel method, called PCALIN, which uses not only the local sensitivities, but also 

considers the uncertainty and the correlation of parameters, and furthermore the uncertainty and the weights of the 

experimental data. The method also identifies the relevant subset of the experimental data collection, thereby 

allows significant savings in computation time at mechanism optimization. 

 

Introduction 

Detailed chemical kinetic mechanisms are widely 

used to simulate combustion systems for both industrial 

and scientific purposes. In the traditional mechanism 

development approach, the thermodynamic and kinetic 

information based on direct experimental data and 

theoretical results are amalgamated into a detailed 

chemical kinetic mechanism [1]. However, the 

performance of such a mechanism can be improved 

greatly by tuning its parameters within their uncertainty 

limits using the results of indirect measurements. 

The first kinetic parameter optimization studies on 

combustion kinetic mechanisms were carried out by 

Frenklach et al. [2,3] and Sheen and Wang. [4,5]. Pitsch 

et al. [6,7] extended the methodology to the 

optimization of reaction rate rules and thermochemical 

parameters. A method that allowed efficient global 

optimization of all three Arrhenius parameters in their 

joint uncertainty domain [8,9] and considered both 

direct experimental and theoretical determinations of 

rate coefficients, and indirect measurements was 

introduced by Turányi et al. [10] This methodology has 

been used to optimize detailed reaction mechanisms of 

the combustion of several fuels (e.g. syngas [11], 

methanol and formaldehyde [12], hydrogen doped with 

nitrogen oxides [13]). In these works, a hierarchical 

optimization strategy was used, which gradually 

increased the number of active parameters and 

experimental data considered. 

Detailed combustion mechanisms usually contain 

large number of uncertain parameters. Frenklach et al. 

suggested that only those parameters (‘the active 

parameters’) need to be fitted that have a high influence 

on the simulated value of the experimental data. 

Frenklach et al. noted [14] that at the selection of the 

active parameters not the local sensitivity information, 

but instead the product of sensitivity and the range of 

parameter uncertainty should be considered. Warnatz 

[15] has used the ‘sensitivity-uncertainty index’ for the 

characterization of the importance of a reaction step, 
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which was defined as the absolute value of the product 

of the semi-normalized local sensitivity coefficient for 

model result Y with respect to parameter Ai and 

uncertainty parameter fi. Turányi et al. [16] 

demonstrated that the sensitivity-uncertainty index is 

proportional to the square root of the contribution of the 

uncertainty of the rate coefficient of reaction i to the 

variance of model output Y. Sheen and Wang called 

[17] the product of uncertainty parameter fi and 

normalized sensitivity coefficient as ‘uncertainty-

weighted sensitivity coefficient’. Cai and Pitsch [6] 

introduced the term ‘optimization potential’ for this 

quantity, and they used it for the selection of the active 

parameters.  

In a recent work [18], we demonstrated that further 

significant improvements in optimization efficiency 

can be achieved by considering the correlation of the 

parameters to select groups of active parameters and 

relevant subsets of experimental data based on the 

principal component analysis (PCA) of scaled 

sensitivity matrices. These methods can be considered 

as generalizations of the PCA of the sensitivity matrix 

[19]. Three novel PCA-based active parameter 

selection strategies of increasing complexity were 

derived and compared with local sensitivity 

coefficients and optimization potentials. Here, we 

present the same case study, but the equations are given 

in a more general form, which allows weighting of data 

series in the error function. This is necessary to develop 

models of balanced performance for various 

experimental types in the case of an unbalanced data 

collection, for example, which contains many more 

data series from jet-stirred reactors than from laminar 

flame speed measurements. 

 

The investigated combustion system 

Optimization of a methanol/NOx combustion 

mechanism was chosen to test the novel parameter 

ranking strategies. Methanol is a promising alternative 

to fossil transportation fuels, and its interactions with 
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nitrogen oxides (NOx) in combustion systems are also 

important due to environmental regulations. In a recent 

publication [20], we collected all available 

concentration data measured in in jet stirred reactors 

(JSR), tubular flow reactors (TFR) and shock tubes 

(ST) corresponding to methanol/NOx combustion and 

tested 17 mechanisms against them. After evaluation 

and filtering, 2360 data points in 225 data series were 

selected to be used for optimization in the present 

study. More details about the data collection can be 

found in the original publication [18]. The collected 

225 data series were stored in 73 ReSpecTh Kinetics 

Data v2.3 (RKD) XML format data files [21]. RKD is 

the reaction kinetics format specification of the 

ReSpecTh database [22], which had been developed 

from the PrIMe Kinetics Data Format [3].  

Based on the benchmark results [20], we selected 

the ELTE+Glarborg mechanism for optimization due to 

its relatively good performance and low uncertainty. 

This mechanism consists of our previously optimized 

syngas [11], methanol [12] and hydrogen/NOx [13] 

mechanisms extended with the C1/NOx reactions 

obtained from the Glarborg-2018 mechanism [23]. 

 

Optimization method 

For the parameter optimizations, we applied code 

Optima++ [24], which implements the optimization 

method developed by Turányi et al. [10] and uses the 

numerical optimization algorithm FOCTOPUS 

developed by T. Nagy [10,25]. In this work we used 

OpenSMOKE++ [26,27] simulation code, but 

Optima++ is linked with multiple other solvers. The 

method minimizes the following error function: 

𝐸(𝐏) =
1

𝑁
∑∑

𝑤𝑓𝑠𝑑

𝑁𝑓𝑠𝑑
∑ (

𝑌𝑓𝑠𝑑
sim(𝐏) − 𝑌𝑓𝑠𝑑

exp

𝜎𝑓𝑠𝑑
exp )

2𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

.

𝑁𝑓

𝑓=1

 (1) 

where 𝑁 is the total number of data series, Nf is the 

number of data files, 𝑁fs is the number of data series in 

the f-th file and 𝑁fsd is the number of data in its s-th data 

series. In this data series, 𝑌𝑓𝑠𝑑
exp

 is the optionally 

transformed d-th data and 𝑌𝑓𝑠𝑑
sim is its simulated value, 

which depends on parameter vector P that contains 

transformed Arrhenius parameters (ln A, n, E/R). R is 

the universal gas constant. The 𝑤𝑓𝑠𝑑  factors are the 

weights, which are all unity in the unweighted case. The 

experimental uncertainty of a data point is also taken 

into account via the 𝜎𝑓𝑠𝑑
exp

 standard deviation of its 

determination. The detailed methodology of 

determining 𝜎𝑓𝑠𝑑
exp

and its values for all the collected data 

series can be found in the original publication [18]. 

Thus, square root of E(P) measures the root mean 

squared deviation of the simulation results from the 

experimental data relative to the standard deviation of 

the experimental data. E(P) is around 1 for a perfect 

model, and below 9 for a model which is accurate on 

average within three experimental standard deviation. 

The selected Arrhenius parameters were optimized 

in such a way that the rate coefficients calculated with 

the optimized rate parameters always remained within 

their prior uncertainty interval [kmin(T); kmax(T)] in the 

temperature interval of 800 K to 2500 K. The 

uncertainty parameter is defined as the radius of a 

symmetric uncertainty range around the nominal k0(T) 

value on log10 scale: 

𝑓prior(𝑇) = log10
𝑘max(𝑇)

𝑘0(𝑇)
= log10

𝑘0(𝑇)

𝑘min(𝑇)
. (2) 

It was determined for each reaction based on directly 

measured experimental data and theoretical 

determinations taken from the NIST Chemical Kinetics 

Database [28] and other sources. All data used are 

referenced in the k-evaluation web site [29] and in the 

original publication [18] with the description of the 

determination of prior uncertainty of the rate 

coefficients. More details can be found also in our 

previous publication [20]. The standard deviation of 

ln k can be calculated by assuming that the extreme ln k 

values correspond to 3 limits [30]: 

𝜎 =
ln 10

3
𝑓prior. (3) 

When ln A is the only fitted Arrhenius parameter, this 

 is assumed to be characteristic [8,9] for ln A, too. 

 

Simple global measures for parameter selection 

In most previous optimization studies, 

identification of active parameters was based on the 

matrix of local sensitivity coefficients: 

𝐒 = {𝑆𝑓𝑠𝑑,𝑙
 } = {

𝜕𝑌𝑓𝑠𝑑
sim(𝐏)

𝜕𝑃𝑙
}. (4) 

𝑃𝑙  is the l-th parameter out of Np. For each (fsd)-th data, 

the 𝑆𝑓𝑠𝑑,𝑙 values are normalized and the 𝐈S importance 

matrix (S stands for sensitivity) is defined: 

𝐈S = {𝐼𝑓𝑠𝑑,𝑙
S } = {

𝑆𝑓𝑠𝑑,𝑙
 

max
𝑚
|𝑆𝑓𝑠𝑑,𝑚
 |

}. (5) 

We propose a global importance measure 𝐼𝑙
S  using 

RMS averaging in accordance with Eq. (1): 

𝐼𝑙
S = √

1

𝑁
∑∑

𝑤𝑓𝑠𝑑

𝑁𝑓𝑠𝑑
∑ 𝐼𝑓𝑠𝑑,𝑙

S 2

𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

𝑁𝑓

𝑓=1

. (6) 

The optimization potential, which is the product of 

sensitivity coefficient and parameter uncertainty, is a 

better measure for the selection of the active 

parameters, since parameters can be tuned only within 

their uncertainty range. After the normalization of 

measure 𝑆𝑓𝑠𝑑,𝑙
 𝜎𝑙 , the 𝐈SU impact matrix (U stands for 

parameter uncertainty) can be defined: 

𝐈SU = {𝐼𝑓𝑠𝑑,𝑙
SU } = {

𝑆𝑓𝑠𝑑,𝑙
 𝜎𝑙

max
𝑚
|𝑆𝑓𝑠𝑑,𝑚
 𝜎𝑚|

}. (7) 

Furthermore, we can also define a global impact 

parameter 𝐼𝑙
SU similarly to 𝐼𝑙

S in Eq. (6): 
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𝐼𝑙
SU = √

1

𝑁
∑∑

𝑤𝑓𝑠𝑑

𝑁𝑓𝑠𝑑
∑ 𝐼𝑓𝑠𝑑,𝑙

SU 2

𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

𝑁𝑓

𝑓=1

. (8) 

Global importance measures, 𝐼𝑙
S  and 𝐼𝑙

SU , which 

range between 0 and 1, can be used for ranking and 

selecting active parameters for optimization. The 

highest ranked parameters are included one-by-one into 

the optimization and more and more parameters 

optimized together in subsequent steps. The procedure 

is continued until consideration of additional 

parameters gives only negligible reduction in the error 

function. In our previous studies, this stepwise 

procedure could reduce the value of the error function 

more steadily and reliably than tuning many parameters 

at once. However, rate coefficients can be highly 

correlated, thus such a group of correlated parameters 

needs to be considered together during optimization.  

 

Novel active parameter and experimental data 

selection strategies based on principal component 

analysis 

To determine parameter groups which have 

correlated effect on the objective function we use 

principal component analysis. To derive a compact 

formalism, we introduce the following data series size-

normalized and experimental uncertainty-normalized 

error vector: 

𝐄̃ = {𝐸̃𝑓𝑠𝑑} = {√
𝑤𝑓𝑠𝑑

𝑁𝑁𝑓𝑠𝑑

𝑌𝑓𝑠𝑑
sim(𝐏) − 𝑌𝑓𝑠𝑑

exp

𝜎𝑓𝑠𝑑
exp }. (9) 

Thus, the objective function gets a compact form: 

𝐸(𝐏) = 𝐄̃T𝐄̃. (10) 

Furthermore, the parameter vector can also be 

normalized by its uncertainty: 

𝐏̃ = {𝑃𝑙̃} = {𝑃𝑙/𝑙}. (11) 

The components of this normalized vector change 

between -1 and +1 if we vary the corresponding 

parameter within a [−𝜎𝑙 , 𝜎𝑙] range.  

A novel parameter importance matrix 𝐈SUE can be 

introduced, which also incorporates experimental 

uncertainty (denoted by superscript E):  

𝐈SUE = {𝐼𝑓𝑠𝑑,𝑙
SUE } =

𝜕𝐄̃

𝜕𝐏̃
= {√

𝑤𝑓𝑠𝑑

𝑁𝑁𝑓𝑠𝑑

𝑆𝑓𝑠𝑑,𝑙
 𝑙

 𝜎𝑓𝑠𝑑
exp }. (12) 

The change of the objective function can be expanded 

up to second order in parameter perturbation 𝐏̃: 

Δ𝐸 ≈ 2𝐄̃T𝐈SUE𝐏̃ + 𝐏̃T𝐈SUE,T𝐈SUE𝐏̃. (13) 

It is important to point out that this is not a full second-

order expansion as it misses terms containing second 

derivatives of 𝐄̃  that contains second-order 

sensitivities, which would be very expensive to 

calculate.  

If we assume that the initial kinetic model is already 

very accurate (i.e. components of 𝐄̃ are small) then the 

variation of the objective function simplifies to the 

second term of Eq. (12), which is a quadratic form of 

the positive semidefinite 𝐐SUE = 𝐈SUE,T𝐈SUE  matrix 

(NpNp). Principal component analysis (PCA) of 𝐐SUE 

matrix is based on its eigenproblem:  

𝐐SUE𝐔 = 𝐔 ∙ diag(𝜆1, … , λ𝑁𝑝). (14) 

Matrix 𝐔  contains the orthonormal eigenvectors 

(𝐮𝑖𝐮𝑗 = 𝛿𝑖𝑗) in its columns and 𝜆𝑖-s are non-negative 

eigenvalues. Considering unit perturbations along all 

eigenvectors gives the sum of eigenvalues as the total 

change of the error function. 

∑𝐮𝑖
T𝐐SUE𝐮𝑖

 

𝑁𝑝

𝑖=1

=∑𝜆𝑖

𝑁𝑝

𝑖=1

=∑𝜆𝑖

𝑁𝑝

𝑖=1

∑𝑢𝑖𝑝
2

𝑁𝑝

𝑝=1⏟  
1

. (15) 

This can be approximated usually with relatively low 

number of principal components belonging to largest 𝜆𝑖 
eigenvalues and with the largest absolute 𝑢𝑖𝑝 

eigenvector components that designate the most 

important groups of correlated parameters which need 

to be included at once into the optimization procedure.  

This formulation also allows the selection of 

relevant experiments if we recast the error variation 

caused by perturbation 𝐮𝑖
  into the following form:  

𝜆𝑖 = 𝐮𝑖
T𝐐SUE𝐮𝑖

 = (𝐈SUE𝐮𝑖
 )2. (16) 

The components of the 𝐈SUE𝐮𝑖
  vector has a compound 

index of (𝑓𝑠𝑑) , thus the vector norm can be 

decomposed into contributions of data files (i.e. 

experiments) as follows: 

𝜆𝑖 =∑∑∑(𝐈SUE𝐮𝑖
 )𝑓𝑠𝑑
2

𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1⏟            
data file 𝑓

.

𝑁𝑓

𝑓=1

 (17) 

Using this measure, a subset of most important data 

files can be selected whose simulation results 

contribute greatly to the variation of the error function 

induced by a perturbation along a principal component, 

whereas the contribution of the ignored data files to the 

error function change will be negligible. Thereby, this 

PCA-SUE strategy is expected to significantly reduce 

the computational effort of parameter optimization.  

To test the effect of the consideration of 

experimental uncertainties on the efficiency of the 

optimization strategy, such PCA analysis can also be 

done for a similarly defined 𝐐SU = 𝐈SU,T𝐈SU  matrix 

(PCA-SU strategy), even though it cannot be directly 

related to the variation of the error function.  

If the initial kinetic model is not very accurate then 

the first-order variation in Eq. (13) cannot be neglected. 

Thus, linear contributions due to parameter variations 

along the principal components should also be 

considered during ranking of principal components. Let 

consider the sum of linear and quadratic changes of E 

induced by ±1  (parameter) perturbation along 

eigenvector 𝐮𝑖
 : 

Δ𝐸 ≈ 2𝐄̃T𝐈SUE𝐮𝑖 + 𝜆𝑖 ≤ 2|𝐄̃
T𝐈SUE𝐮𝑖| + 𝜆𝑖 . (18) 
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For ranking the principal components, the largest 

induced change should be used, which is obtained if the 

sign of the linear term is also non-negative. In the 

following, we refer to this procedure as PCALIN, 

because it also considers linear changes in the error 

function. The linear term can also be decomposed into 

contributions from individual eigenvector components, 

thus now they are ranked based on the following 

quantity instead of 𝑢𝑖𝑝
2 :  

2

𝜆𝑖
|(𝐄̃T𝐈SUE)

𝑝
 𝑢𝑖𝑝| + 𝑢𝑖𝑝

2 . (19) 

For the selection of data files, both linear and quadratic 

terms in 𝐮𝑖 need to be considered: 

2|𝐄̃T𝐈SUE𝐮𝑖| + (𝐈
SUE𝐮𝑖

 )2. (20) 

In the linear term, the scalar product between vectors 

𝐄̃T  and 𝐈SUE𝐮𝑖  corresponds to a summing over the 

(𝑓𝑠𝑑)  compound index. Therefore, the maximum 

variation in the contribution of the f-th data file to the 

error function duse to ±1 perturbation along principal 

component 𝐮𝑖
  can be given as: 

∑∑ 2|𝐄̃𝑓𝑠𝑑
T (𝐈SUE𝐮𝑖

 )𝑓𝑠𝑑|+(𝐈
SUE𝐮𝑖

 )𝑓𝑠𝑑
2

𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

. (21) 

This measure allows selection of most relevant data 

files to be used during optimization thus it can reduce 

the computational effort.  

Note, that these derivations can be generalized for 

any types of model parameters, for example the 

thermodynamic and transport parameters of kinetic 

mechanisms.  

 

Results - ranking of parameters 

Local sensitivity analysis on the simulation results 

of all considered 2360 data points was carried out by 

perturbing the pre-exponential factors for all the 562 

rate coefficients (25 of them are low-pressure limit (LP) 

rate coefficients) in the ELTE+Glarborg mechanism 

with +5%. We assumed unit weights for all data points 

(ie. 𝑤𝑓𝑠𝑑 = 1 ) in the error function. In all, five 

optimization strategies were set up and tested. These 

included (i) strategy S: the selection of the active 

parameters based on global importance measure 𝐼𝑙
S 

using the local sensitivity information only; (ii) strategy 

SU based on global importance measure 𝐼𝑙
SU ; (iii) 

strategy PCA-SU based on the PCA of matrix 𝐐SU; (iv) 

strategy PCA-SUE based on the PCA of matrix 𝐐SUE; 

(v) strategy PCALIN based on the PCA of matrix 𝐐SUE 

with linear contributions. In both PCA and PCALIN 

strategies, principal components, eigenvector 

components and experiments were selected to 

guarantee at least 95%, 90% and 90% reproduction of 

the objective function and the selected principal 

components, respectively.  

Table 1 shows the comparison of the numbers of the 

optimization target reactions and the data files used in 

the optimization steps, using the different active 

parameter selection strategies. Note that the PCA based 

strategies use only a selected subset of experiments in 

the optimization steps, whereas final error values were 

obtained on the full data collection. 

Strategies S and SU were determined based on the 

direct reaction rankings according to importance 

measures 𝐼𝑙
S and 𝐼𝑙

SU, which were calculated from the 

the local sensitivity coefficients (S) and optimization 

potentials (SU), respectively.  

The ranked list of reactions based on these 

strategies can be seen in the original publication  [18]. 

In accordance with our hierarchic strategy, one 

additional parameter was included to the optimization 

in each optimization step, up the 12th step. In the 13th–

14th steps, 3 and 5 new parameters were included 

together, respectively. The whole data collection was 

used in each optimization step. 

The one-by-one inclusion of parameters based on 

simple parameter rankings was found to be highly CPU 

time-ineffective, as it carried out a separate 

optimization step for each parameter, moreover the 

subsequent inclusion of highly correlated parameters 

caused unnecessary readjustments. The proposed 

principal component analysis-based methods can 

overcome this issue, as they select groups of correlated 

reactions and relevant subsets of data files, resulting an 

optimization process with fewer steps and significantly 

lower computation times. The PCA-SU strategy 

identified three principal components corresponding to 

a 3-step optimization. However, the selection of the 

data files was still relatively inefficient, as 58 data files 

out of the 73 was already selected in the first step. 

The PCA-SUE and PCALIN methods, which also 

take into account the experimental errors (E) and the 

simulation errors of experimental data (in the linear 

change) and thereby allow a more efficient selection of 

active parameters and the corresponding relevant data 

files, identified in 5 and 4 principal components, 

corresponding to 5-step and 4-step optimization 

procedures, respectively. The parameter groups  

selected by the three PCA-based strategies are given in 

the original publication [18], respectively. 

 

 

 

Table 1. The number of active parameters (Par) and experimental data files (Exp) used in the optimization steps 
(Step) of the various strategies 

S SU PCA-SU PCA-SUE PCALIN 

Step Par Exp Step Par Exp Step Par Exp Step Par Exp Step Par Step 

1…12 1…12 73 1…2 1…12 73 1 10 58 1 7 40 1 10 36 

13 15 73 13 15 73 2 15 61 2 9 45 2 11 51 

14 20 73 14 20 73 3 23 69 3 14 55 3 14 53 

         4 18 57 4 22 54 

         5 23 60    
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Results – optimization efficiency of strategies 

For the comparison of strategies, we optimized only 

the ln A parameters of the selected reactions as local 

sensitivities coefficients were determined for this 

parameter only. In Fig. 1, the performance of the 

strategies is compared by the change of the error 

function values as a function of the optimization steps, 

the number of the optimized ln A parameters and the 

estimated runtimes required for the computations. 

These runtimes were estimated separately for each 

optimization step based on the product of the mean 

iteration times and iteration numbers in 48-threaded 

calculations on AMD EPYC 7451 24-core CPUs. 

Fig. 1. a) shows that the optimization of the highest 

ranked ln 𝐴 parameters of S and SU strategies could not 

improve the accuracy of the mechanism steadily in 

every steps. The initial E = 27.45 value was reduced in 

the 2nd steps to 22.13 and 22.05 in the case of S and SU, 

respectively. However, after the 2nd and 3rd steps, 

respectively, these strategies could not reduce the E 

value effectively, except only in the 8th step and the 

13th-14th lumped steps. The final E values were 18.47 

and 16.10 in the cases of S and SU, respectively, 

showing the superiority of strategy SU over S. A much 

steadier and steeper decrease in the error function with 

the number of optimization steps could be achieved 

using the PCA-SU, PCA-SUE and PCALIN methods. 

The first steps of these strategies provided huge 

improvements and the further steps resulted in 

significant error reductions, too. Final E values of 

16.06, 16.13 and 15.46 were reached in the cases of 

PCA-SU, PCA-SUE and PCALIN, respectively. 

Fig. 1. b) also shows that PCALIN had the best 

performance, as it always had the lowest E values with 

respect to the numbers of the optimized ln A 

parameters. The most significant differences between 

the performance of the strategies can be seen in Fig. 1 

c). The sequential S and SU strategies had an overall 

computation time around 700 hours, in contrast of the 

100-200 hours of the other methods. Due to the lowest 

final E value and the low runtime, the PCALIN can be 

considered as the best investigated parameter selection 

strategy.  

The error function values, the selected reactions, the 

initial and optimized lnA parameter values and their 

prior and posterior uncertainties can be found in the 

original publication [18]. The optimized values 

obtained by the different strategies are in good 

agreement, and the posterior uncertainties are usually 

much less than the prior ones. Significant differences 

between the optimal ln A values according to the 

different strategies were found only in the cases of 

R362 and R396. It might be caused by an existing 

correlated reaction (e.g. R363 for R362), which were 

not optimized resulting in different optimal values. 

Note that these reactions had high prior uncertainty 

(f ≥ 1).  

 

Conclusions 

Based on a novel principal component analysis of the 

error function, three procedures, denoted as PCA-SU, 

PCA-SUE and PCALIN, were introduced and tested. It 

was shown that the PCA-based methods could achieve 

steady decrease of the model error and by allowing the 

selection of subsets of relevant experiments they also 

allowed significant savings in computational time. 

Especially the PCALIN method proved to be very 

effective at the selection of the active parameters, as it 

also takes into account the simulation error of the 

starting model for the individual experiments. The 

corresponding codes are available on the respect 

webpage [22]. 
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